Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Understanding phosphorus diffusion into silicon in a MOVPE environment for III-V on silicon solar cells

Identifieur interne : 000253 ( Main/Repository ); précédent : 000252; suivant : 000254

Understanding phosphorus diffusion into silicon in a MOVPE environment for III-V on silicon solar cells

Auteurs : RBID : Pascal:13-0239257

Descripteurs français

English descriptors

Abstract

Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. When manufacturing a multi-junction solar cell on silicon, one of the first processes to be addressed is the development of the bottom subcell and, in particular, the formation of its emitter. In this study, we analyze, both experimentally and by simulations, the formation of the emitter as a result of phosphorus diffusion that takes place during the first stages of the epitaxial growth of the solar cell. Different conditions for the Metal-Organic Vapor Phase Epitaxy (MOVPE) process have been evaluated to understand the impact of each parameter, namely, temperature, phosphine partial pressure, time exposure and memory effects in the final diffusion profiles obtained. A model based on SSupremIV process simulator has been developed and validated against experimental profiles measured by ECV and SIMS to calculate P diffusion profiles in silicon formed in a MOVPE environment taking in consideration all these factors.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0239257

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Understanding phosphorus diffusion into silicon in a MOVPE environment for III-V on silicon solar cells</title>
<author>
<name sortKey="Garc A Tabares, Elisa" uniqKey="Garc A Tabares E">Elisa Garc A-Tabarés</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar, Universidad Politécnica de Madrid, ETSI de Telecomunicación, Avenida Complutense 30</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mart N, Diego" uniqKey="Mart N D">Diego Mart N</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>CES Felipe II-Universidad Complutense de Madrid, CL Capitán 39</s1>
<s2>28300 Aranjuez, Madrid</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
<orgName type="university">Université complutense de Madrid</orgName>
</affiliation>
</author>
<author>
<name sortKey="Garc A, Iv N" uniqKey="Garc A I">Iv N Garc A</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar, Universidad Politécnica de Madrid, ETSI de Telecomunicación, Avenida Complutense 30</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rey Stolle, Ignacio" uniqKey="Rey Stolle I">Ignacio Rey-Stolle</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar, Universidad Politécnica de Madrid, ETSI de Telecomunicación, Avenida Complutense 30</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0239257</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0239257 INIST</idno>
<idno type="RBID">Pascal:13-0239257</idno>
<idno type="wicri:Area/Main/Corpus">000A58</idno>
<idno type="wicri:Area/Main/Repository">000253</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Diffusion profile</term>
<term>Gallium phosphide</term>
<term>III-V compound</term>
<term>Indium phosphide</term>
<term>MOVPE method</term>
<term>Manufacturing</term>
<term>Memory effect</term>
<term>Multijunction solar cells</term>
<term>Partial pressure</term>
<term>Phosphine</term>
<term>Phosphorus</term>
<term>Photovoltaic system</term>
<term>Silicon</term>
<term>Silicon solar cells</term>
<term>Simulator</term>
<term>Solar cell</term>
<term>System simulation</term>
<term>Ternary compound</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode MOVPE</term>
<term>Cellule solaire silicium</term>
<term>Cellule solaire</term>
<term>Système photovoltaïque</term>
<term>Fabrication industrielle</term>
<term>Cellule solaire multijonction</term>
<term>Simulation système</term>
<term>Phosphine</term>
<term>Pression partielle</term>
<term>Effet mémoire</term>
<term>Profil diffusion</term>
<term>Simulateur</term>
<term>Phosphore</term>
<term>Silicium</term>
<term>Composé III-V</term>
<term>Composé ternaire</term>
<term>Phosphure de gallium</term>
<term>Phosphure d'indium</term>
<term>GaInP</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Fabrication industrielle</term>
<term>Phosphore</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. When manufacturing a multi-junction solar cell on silicon, one of the first processes to be addressed is the development of the bottom subcell and, in particular, the formation of its emitter. In this study, we analyze, both experimentally and by simulations, the formation of the emitter as a result of phosphorus diffusion that takes place during the first stages of the epitaxial growth of the solar cell. Different conditions for the Metal-Organic Vapor Phase Epitaxy (MOVPE) process have been evaluated to understand the impact of each parameter, namely, temperature, phosphine partial pressure, time exposure and memory effects in the final diffusion profiles obtained. A model based on SSupremIV process simulator has been developed and validated against experimental profiles measured by ECV and SIMS to calculate P diffusion profiles in silicon formed in a MOVPE environment taking in consideration all these factors.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>116</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Understanding phosphorus diffusion into silicon in a MOVPE environment for III-V on silicon solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GARCÍA-TABARÉS (Elisa)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MARTÍN (Diego)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GARCÍA (Iván)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>REY-STOLLE (Ignacio)</s1>
</fA11>
<fA14 i1="01">
<s1>Instituto de Energía Solar, Universidad Politécnica de Madrid, ETSI de Telecomunicación, Avenida Complutense 30</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CES Felipe II-Universidad Complutense de Madrid, CL Capitán 39</s1>
<s2>28300 Aranjuez, Madrid</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>61-67</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000503882310090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0239257</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. When manufacturing a multi-junction solar cell on silicon, one of the first processes to be addressed is the development of the bottom subcell and, in particular, the formation of its emitter. In this study, we analyze, both experimentally and by simulations, the formation of the emitter as a result of phosphorus diffusion that takes place during the first stages of the epitaxial growth of the solar cell. Different conditions for the Metal-Organic Vapor Phase Epitaxy (MOVPE) process have been evaluated to understand the impact of each parameter, namely, temperature, phosphine partial pressure, time exposure and memory effects in the final diffusion profiles obtained. A model based on SSupremIV process simulator has been developed and validated against experimental profiles measured by ECV and SIMS to calculate P diffusion profiles in silicon formed in a MOVPE environment taking in consideration all these factors.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02D2</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cellule solaire silicium</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Silicon solar cells</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Système photovoltaïque</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Photovoltaic system</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Sistema fotovoltaico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Fabrication industrielle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Manufacturing</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Cellule solaire multijonction</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Multijunction solar cells</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Simulation système</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>System simulation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Simulación sistema</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Phosphine</s0>
<s2>FF</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Phosphine</s0>
<s2>FF</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fosfina</s0>
<s2>FF</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Pression partielle</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Partial pressure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Presión parcial</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Effet mémoire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Memory effect</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Efecto memoria</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Profil diffusion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Diffusion profile</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Perfil difusión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Simulateur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Simulator</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Simulador</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Phosphore</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Phosphorus</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Fósforo</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>GaInP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>224</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000253 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000253 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0239257
   |texte=   Understanding phosphorus diffusion into silicon in a MOVPE environment for III-V on silicon solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024